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DEPENDENCE OF THE CHARACTERISTICS OF
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SCATTERING MEDIA AND THEIR BOUNDARY
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We suggest a new hybrid numerical-analytical method for solving an integrodifferential equation of radiation
transfer. We present results of an investigation of the effect of the temperature distribution and scattering
properties of a medium and its absorption density as well as the emissivity of the boundary on the intensity
and density of the emergent-radiation fluxes.

Radiative heat transfer plays an exceptionally important part in modern engineering and technology. In
the furnace chambers of waste-heat boilers and steam generators, metallurgical furnaces, high-temperature reactors
of chemical technology, and many other facilities operating at high temperatures radiation is the basic mode of
energy transfer.

In combustion chambers of power plants the heat carrier is usually a two-phase system of gas—solid (or
liquid) particles. The presence of condensed-phase particles of the combustion products is responsible for both their
additional contribution to the overall radiation of the heat carrier and the occurrence of multiple processes of
scattering that influence the angular distribution of the radiation in the medium. Among the main gaseous
components of the combustion products that are optically active in the infrared spectral region there are CO5, H0,
and CO. Particles of soot, ash, and coke constitute the condensed phase of the heat carrier.

The optical properties of the medium and its boundary surface affect appreciably the intensity of radiative
heat exchange. The ever-increasing requirements on the reliability, economic efficiency, and environmental safety
of high-temperature technological facilities necessitate a more detailed investigation of this phenomenon and
allowance for it.

Below we present investigation results for the dependence of the intensity and density of the radiation
fluxes incident on the boundary surfaces of a medium on the temperature distribution, its scattering properties and
absorption density, and the emissivity of the boundary.

To eliminate effects that may appear due to the shape of the volume occupied by the medium, the
investigations were carried out for a plane layer whose thickness was taken equal to unity and were based on
numerical solution of an integrodifferential equation for radiation transfer that was studied assuming local
thermodynamic equilibrium [1]:
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Here /(x, u) is the intensity of the radiation at the point with the coordinate x in the direction forming the angle
© = arccos u with the coordinatc axis; y(x) and o(x) are the coefficients of absorption and scattering, respectively;
pix, u, ') is the radiation scattering phase function for an elementary volume of the medium; B(T) is the intensity
of the radiation of a blackbody at the temperature T.

The scattering phase function p(x, 4, ') is determined by the fraction of the energy coming to the point
x from the direction 4 and scattering in the direction x. In [2, 3] it was shown that in a number of cases (for
example, when the radiation is multiply scattered on particles of soot, ash, or coke) the scattering phase function
can be represented in the form

P ) =) +2(1 =B ()] @-u), )

where B(x) is the doubled fraction of backward scattering of the radiation upon its interaction with an elementary
volume of the medium, and d(u — u') is the delta-function.

With allowance for Eq. (2) the problem is reduced to the case of isotropic scattering, and Eqg. (1) takes the
form

“%1(%#)4"0()6)1(&;4)=S(x,[), (3)
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where S(x, N =y (x)B(x) + 0'(x)/2 [ I(x, u')du' is the function of sources, and a(x) =x(x) + o(x), o' = fo.
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In carrying out these investigations, we considered different kinds of boundary conditions. Thus, for
example, when we investigated the dependence of the intensity and density of the fluxes of emergent radiation, on
the optical density and scattering properties of the medium, we assumed that the boundary surfaces were
transparent in order to exclude the influence of their optical properties:

10, )| ,0=1 ) and I(l,u)|,co=17 (). (4)

Here 1, and I, are the intensity of the radiation incident from the outside onto the left and right boundaries of the
layer considered, respectively.

When we investigated the effect of the emissivity of the boundary surfaces on the characteristics of the
radiative heat exchange, we assumed the boundaries of the layer to be diffusely reflecting and emitting:
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In a number of cases the use of the method of finite differences for a numerical solution of Eq. (3) gave
results that did not have a physical meaning. To overcome this difficulty, the present authors suggested a new
hybrid numerical-analytical method that turned out to be an extremely powerful technique for numerical solution
of radiation problems. The essence of it is as follows.

We consider the following formal solution of Eq. (3) with boundary conditions (4):

I (x, u) =exp —jwdt Il(u)+js—(—l;ﬂexp }G—U—Ldt' dtj, u>0;
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If the quantities a and S are independent of the coordinate, then we can simplify expressions (6) substantially:
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The proposed method of solution is based on piecewise-analytical solutions (7) and consists in combining
them with the method of discrete ordinates and subsequent iterative refinement of the function of sources.

Following the method of discrete ordinates, we select Ng directions of propagation of radiation along which
we calculate the radiation field (0 < © < 7). For each selected direction Eq. (3) is written in the form

ykga;lk(x)+a(x)[k(x)=5(x,l), I <k<Ng, (8)

where /tk =cos O ]J‘(x) is the intensity of the radiation at the point x in the k-th direction.

Next, we divide the layer into sublayers sufficient in number that the values of the functions a and §
change little within each layer. As a result, we obtain a computational grid along the coordinate x with a certain
number of nodes N_,.. It is assumed that within the limits of the i-th sublayer @ = (a; + a,,,)/2 and § =
(S; + S;4,)/2. Then, taking account of Eq. (7), it is possible to obtain recursion formulas for determining the
radiation intensity at all the nodes of the computational grid 1 < i £ N, for all the selected directions of radiation
transfer | < k < Ng:
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Using formulas (9) and boundary conditions (4)

k k K k
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calc
we can calculate the radiation field at all points of the computational region. However, due to the dependence of
the function of sources S(x, /) on the radiation intensity, iterations are required for its refinement. In this case, to
calculate the integral term we can, for example, use the trapezoidal formula

Ng-1

1
S I(x,uydy =05 2 (1k+fk+l kel —-;4/(|. (10)
-1

Thus, the entire calculation process can be divided into the following stages:

1) the values of the radiation intensity If-‘ are assumed to be equal to zero for all of the nodes of the
computational grid (1 < i < N, and for all of the directions considered (1 < k < Ng);

2) the values of the function of sources S, (1 < i < N_,,.) are calculated according to formula (10);
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Fig. 1. Distributions of the dimensionless temperature over the coordinate x.

3) for each of the directions (I < k& < Ng) we calculate the value of the intensity of the radiation 1{-‘ using
formula (9). Simultaneously we determine the value of the relative discrepancy of neighboring iterations
d =max 1l ~- 1‘,~"""/1f""'+l |, m is the iteration numbers;

! 4) we check the condition 8 < do (8, is the given discrepancy); if this condition is not satisfied, the
calculation is repeated beginning from Item 2.

The above computational process makes it possible to calculate with any prescribed accuracy the radiation
intensity in any given direction at each point of a plane layer of an absorbing, emitting, and scattering medium.
Numerical experiments showed that the iteration process converges in 3—10 iterations depending on the kind of
boundary conditions and the Schuster number.

Thus, we consider a plane layer of a selectively emitting, absorbing, and scattering medium. We analyze
the results of a numerical investigation of the effect of its absorption density and scattering properties on the
intensity and density of the emergent radiation. In this case the absorption density of the medium is determined

1
by the integral © = [ y(x)dx, and its scattering properties are characterized by the Schuster number Sc =
0

1
_g o(x)/x(x))dx.

The density of the radiation fluxes emerging from a layer of unit optical thickness is determined as
0 B . v —l v . .
QO =2t [ 1O i du's Qy=2r [ Il u)yu du'.
-1 0

For greater clarity of graphical information, in what follows we use the reduced values of these quantities defined
as their ratios to the Planck radiation density at the maximum temperature of the medium T, ¢0) =
Q0)/ (wB(T 54)) and (1) = Q(1)/(xB(T,,)). Similarly we normalize the intensity of the radiation emerging from
the layer: [, = I/B(T

We carried out investigations for temperature distributions typical of the furnace chambers of power plants.
It is known that in the most cases a symmetric temperature profile is formed in combustion chambers. Moreover,
at a certain distance from the {evel of the burners along the height of the furnace the temperature of the gases at
the center of the flame is equalized [4 ], so that a constant-temperature core is formed at the center. As the number
of burners increases, the probability of the occurrence of a constant-temperature core in the furnace volume
increases. However, farther along the height of the flame, the temperature profile in the cross section of the furnace
changes under the influence of convection and approaches a Schlichting-type profile [5] that characterizes the

temperature distribution in a developed turbulent flow. Figure | presents the considered distributions of the
dimensionless temperature over the coordinate x:

max)-

©(x) = (T (x) = Tp)/ (Tmay = Tp) »
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Fig. 2. Emergent-radiation flux density vs. absorption density of the medium.

The numbers of the curves correspond to the temperature distributions in Fig.
l.

Fig. 3. Effect of the optical density of the medium on the intensity of the
emergent radiation propagating in the direction © =0 (1), /4 (2), 3x/8 (3).
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Fig. 4. Effect of scattering on the intensity (a) and density (b) of fluxes of
emergent radiation in a homogeneous (solid lines) and inhomogeneous
(dashed lines) layer for Sc =0 (1), 0.3 (2), 0.6 (3), 0.9 (4.

where T, is the temperature of the medium at the layer boundary. The temperature of the boundary surface T,
as a rule, differs from Ty in actual furnaces. Usually, T, < T, due to the radiation slip effect.

The values of the temperature and optical density of the medium and the Schuster number and emissivity
of the boundary surface are varied within the ranges characteristic for the furnace chambers of power plants. All
the results that are discussed below were obtained on the assumption of a uniform distribution of the radiation
absorption and scattering coefficients over the volume. The emissivity of the heat-absorbing surface was a prescribed
constant.

Let us analyze the effect of the optical density of the medium and the temperature distribution in it on the
intensity and density of the emergent-radiation fluxes. Here the medium considered is assumed to be nonscattering,
so that Sc = 0. External radiation is absent. Results that characterize this effect were obtained for T, = 2000 K,
Tin = 1000 K, A = 3 um (Figs. 2 and 3).

An analysis of the data presented in Fig. 2 shows that in the case of a uniform temperature (Fig. 1, curve
1) the values of the emergent-radiation flux density increase monotonical as 7 increases, and as T > ® (actually,
for 2 100, ¢(x) = 1.

In a nonhomogeneous medium, for the temperature distributions presented in Fig. | (curves 2-4) the value
of ¢(r) changes from I,/ B(T,,,) at Tt = 0 ({; is the intensity of the external radiation, if the latter exists) to

max
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Fig. 5. Distribution of the intensity of radiation emerging from a
homogeneous layer over the angle © for r = 0.35 (solid lines) and 7 = 100
(dashed lines) and Sc =0 (1), 0.3 (2), 0.6 (3), 0.9 (4.

Fig. 6. Dependence of the relative value of the emergent-radiation intensity
on T in a homogeneous (solid lines) and inhomogeneous (dashed lines) layer
for Sc =0 (D, 0.3 (2, 0.6 (3), 0.9 (4.

B(T in)/ B(Tay) for 1 > o and always has a pronounced maximum at a certain value of , which will be called
critical in what follows and will be denoted by r*. In the temperature range typical for furnace chambers
(1000—2000 K) the critical value t* virtually depends not on the radiation wavelength or the actual values of the

temperature of the medium, but only on the form of its distribution in the layer. It can be calculated from the
approximate formula

I
S VT =, s= [0 (x)dx, (1)
0

obtained by processing results of numerical investigations. As s increases, the critical value of the optical density
of the medium increases. The corresponding maximum value of the radiation flux density also increases.

The dependence of the intensity of the radiation emerging from the layer /, on 7 in the case of a nonuniform
temperature distribution always has a maximum. The critical value 1" at which the maximum radiation intensity is
attained depends greatly on the direction of radiation propagation and decreases with increase in the angle ©. Here
the maximum intensity hardly changes, as is clearly seen from Fig. 3, which illustrates this dependence for the
temperature distribution corresponding to curve 3 in Fig. 1.

We also investigated the effect of scattering processes on radiation transfer in a homogeneous absorbing,
emitting, and scattering layer with nonirradiated boundaries

TO.)]50=1, w)=0 and 7(L,u)|, =1 @) =0.

Typical dependences of the intensity and density of the radiation fluxes emerging from the medium on its
absorption density for different values of the Schuster number are presented in Fig. 4.

In the case of a nonuniform temperature distribution in an absorbing, emitting, and scattering layer with
nonirradiated boundaries the functions /7 (r) and ¢(r) always have an extremal character (Fig. 4), i.e., there is a
critical value of the absorption density of the medium 1 at which the values of the characteristics of radiation
transfer attain their maximum values. As the fraction of the scattering processes increases, the position of the
maximum of the values of /, and ¢ shifts toward smailer values of the optical thickness.

An analysis of results of numerical experiments shows that in the cases considered the radiation scattering-
processes may lead to both amplification of the emergent-radiation intensity and its attenuation, depending on the
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Fig. 7. Dependence of the density of the net flux of radiation (solid lines)
and the incident flux of radiation on the boundary surface of the layer
(dashed lines) on the surface emissivity for v = 0.1 (1), 1.0 (2), 10.0 (3).

directed optical thickness of the layer 1(®) =1/cos © and the Schuster number. This is vividly demonstrated by
the angular distribution of the emergent-radiation intensity presented in Fig. .

In fact, on the one hand, an increase in the coefficient of total attenuation of the medium a =y + o
favors attenuation of radiation, and, on the other hand, scattering of radiation leads to an increase in the
optical path and, consequently, to amplification of the emergent-radiation intensity due to the self-emission
by the medium. The interaction of these two mechanisms can cause both an increase and a decrease in
the emergent-radiation intensity, depending on the absorption density of the medium and its scattering properties.
It should be noted that in the case considered the amplification and attenuation of the radiation intensity
can be substantial and can attain 50% or more, compared to a nonscattering medium (Fig. 6). The fact
should also be emphasized that amplification of radiation intensity due to scattering processes is observed
only at small optical thicknesses t < [.

An analysis of numerical results shows that in the case considered we may isolate three ranges of values
of the optical thickness of the layer that differ by the character of the effect of scattering on the emergent-radiation
intensity:

1) when t < 0.5, the function /,(Sc) increases;

2) in the range 0.5 = r < 2 the function 7,(Sc) has an extremal character;

3) when 7 > 2, the function /,(Sc) decreases.

In spite of the fact that in the first range scattering increases the emergent-radiation intensity, it decreases
the greatest possible values of the transfer characteristics (/,,, ¢) compared to the nonscattering case. We note that
a decrease in the indicated values also occurs upon contraction of the "hot" zone.

The effect of the emissivity of the boundary surface on the characteristics of radiative heat exchange was
investigated on the example of a plane layer with diffusely emitting and reflecting surfaces (boundary conditions
(5)). Results of numerical experiments that characterize the dependence of the density of the net radiation flux
and the radiation flux incident on the boundary surfaces of the layer on their optical properties are illustrated in
Fig. 7. The curves presented in this figure were obtained for the temperature distribution given by curve 3 in Fig.
1.

In conclusion we mention that the extremal character of the function ¢(r) was already noted in the work
of Viskanta [6] when he investigated radiative-convective heat transfer in a nonscattering plane layer. The effect
of the temperature profile on the characteristics of radiative heat cxchange was considered in {71], and in [8] the

existence of a profile of temperatures of a selective gas is indicated at which the radiative flux to the heating surface
is maximum.
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NOTATION

I(x, u), radiation intensity at the point x in the direction © = arccos u4; ©, angle between the direction

of radiation and the x axis; /,, intensity of external radiation; /., emergent-radiation intensity; ¢, density
of the radiation flux incident on the boundary surface; T,, 7, temperature of the boundary surface and
temperature of the medium in the direct vicinity of it; d(u — ¢ ), delta-function; e, emissivity of the boundary

surface.
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